ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Приборы вторичные теплоэнергоконтроллеры ИМ2300

Назначение средства измерений

Приборы вторичные теплоэнергоконтроллеры ИМ2300 (далее - приборы) предназначены для измерений выходных сигналов измерительных преобразователей параметров измеряемой среды и последующих расчетов количества теплоносителя, тепловой энергии, расхода газа в стандартных условиях, расхода жидкости.

Описание средства измерений

Принцип действия приборов основан на преобразовании сигналов измерительных преобразователей расхода, давления, температуры с последующим вычислением параметров измеряемой среды (жидкость, пар, газ).

Приборы предназначены для работы со следующими измерительными преобразователями:

- расходомерами или счетчиками жидкости, пара, газа любого принципа действия с выходным число-импульсным (частотным) сигналом в диапазоне от 0,0001 до 10000 л/импульс (от 0,002 до 2000 Γ ц) или выходным сигналом постоянного тока в диапазоне (0 5) мА, (0 20) мА, (4 20) мА;
- преобразователями абсолютного, избыточного, атмосферного давления и разности давлений с выходным сигналом постоянного тока в диапазоне (0 5) мA, (0 20) мA, (4 20) мA;
- термометрами сопротивления с номинальной статической характеристикой 50M, 50Π , 100M, 100Π , Pt100, 500Π , Pt500;
- преобразователями других физических величин с выходным сигналом постоянного тока в диапазоне (0 5) мA, (0 20) мA, (4 20) мA.

Приборы обеспечивают:

- определение расхода, объема и массы теплоносителя, а также количества теплоты в закрытых и открытых системах теплоснабжения или теплопотребления, содержащих до 5 трубопроводов. Вычисления производятся в соответствии с МИ 2412-97 и МИ 2451-98;
- определение расхода, объема и массы энергоносителя методом переменного перепада давления в соответствии с ГОСТ 8.586.5-2005;
- определение расхода и объема природного газа в рабочих и стандартных условиях в соответствии с ГОСТ Р 8.740-2011. Вычисление коэффициента сжимаемости производится в соответствии с ГОСТ 30319.2-2015;
- определение расхода и объема попутного нефтяного газа в соответствии с ГСССД MP 113-03;
- ведение архивов с интервалом времени от 1 минуты до 24 часов и количеством архивируемых измеренных или вычисленных величин в одной записи до 32. При архивации 32 величин объем почасовых архивов составляет 100 суток, посуточных архивов 192 суток, помесячных архивов 36 месяцев;
- передачу текущих и архивных данных по интерфейсам RS232 и/или RS485 и работу в сети по протоколу MODBUS RTU.

Приборы имеют выходные каналы типа «сухой контакт» (до 4 каналов) и постоянного тока (4 - 20) мА (до 2 каналов).

Соответствует регламентам TP TC 020/2011 «Электромагнитная совместимость технических средств» и TP TC 004/2011 «О безопасности низковольтного оборудования».

Приборы выпускаются в 5 исполнениях, отличающихся конструкцией корпуса и количеством измерительных каналов (далее - каналов):

- ИМ2300H1 настенное, максимальное число каналов 11 (конфигурации 4C2I2R или 5F2I4R);
- ИМ2300ЩМ1 щитовое, максимальное число каналов 10 (конфигурации 2С4I2R или 4С4I2R или Ex-2F4I);
- ИМ2300DIN с установкой на DIN рейку, максимальное число каналов 6 (конфигурация 2F2C2R или 1F, или 2F, или 4F);
- ИМ2300 DIN-BM исполнение ИМ2300DIN с выносным измерительным модулем, максимальное число каналов 6 (конфигурация 2F2C2R);
 - ИМ2300ИРР одноканальное (конфигурация 1F или 1I).

Буквенные индексы в видах конфигураций означают тип каналов, имеющихся в приборах: F - число-импульсный (частотный) канал; I - токовый канал; R - канал термометра сопротивления; C - комбинированный канал (токовый или число-импульсный). Цифра перед буквой означает количество соответствующих каналов. Ex - вариант прибора с искробезопасными входами.

Внешний вид приборов различных исполнений приведен на рисунке 1.

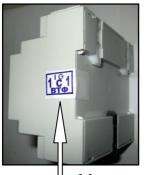
ИМ2300Н1

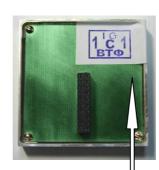
ИМ2300ЩМ1

Выносной измерительный модуль ИМ2300BM

ИМ2300ИРР

Рисунок 1 - Внешний вид приборов


Обозначение мест нанесения знака поверки и пломбировки приборов от несанкционированного доступа для различных исполнений приведены на рисунке 2.



Место нанесения знака поверки и пломбировки

ИМ2300ЩМ1

Место нанесения знака поверки и пломбировки

Место нанесения знака поверки и пломбировки

Место нанесения знака поверки и пломбировки

ИМ2300DIN ИМ2300BM

ИМ2300ИРР

Рисунок 2 - Схемы пломбировки приборов от несанкционированного доступа, обозначение места нанесения знака поверки

Программное обеспечение

Программное обеспечение прибора (далее - ПО) состоит из базового модуля, записанного во FLASH память микроконтроллера, и паспорта конфигурации прибора, который заносится в переписываемую с компьютера память EEPROM. Конфигурация прибора создается на основании опросного листа, представленного потребителем или самим потребителем при наличии у него программы IMProgram.

Идентификационные данные ПО средства измерений представлены в таблице 1.

Таблица 1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	IM2300
Номер версии (идентификационный номер) ПО	1.7
Цифровой идентификатор ПО (сумма по модулю 256 метрологически	217
значимой части ПО)	

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014. В приборах предусмотрена надежная защита от несанкционированных вмешательств в их работу, которые могут привести к искажению результатов измерений.

Изменение версии ПО возможно только в заводских условиях с использованием специального оборудования и ПО. При изменении версии ПО прибор делает соответствующую запись в журнал событий, хранящийся в приборе, с указанием времени данного события.

Метрологические и технические характеристики

Метрологические характеристики приборов представлены в таблице 2.

Таблица 2

Наименование характеристики	Значение
Диапазон измеряемых величин (расход, давление,	Определяется диапазоном
температура и др.)	измерений первичных
	преобразователей и ограничений
	не имеет. Диапазон вычисленных
	значений в приборах не
	ограничивается.
Пределы допускаемой основной погрешности при	
преобразовании входных сигналов:	
- приведенной для унифицированных входных сигналов	± 0.05 или ± 0.1 ; или ± 0.2
(электрический ток, электрическое напряжение), %	(за нормирующее значение
	принимается значение диапазона
	измерений входного сигнала)
- относительной для число-импульсных (частотных)	0.07
входных сигналов, %	$\pm 0,05$ или $\pm 0,1$
- абсолютной для входных сигналов от	
термопреобразователей сопротивления, °С:	
- в диапазоне с разностью верхнего и нижнего	0.1
пределов измерений ≤ 300 °C	±0,1 или ±0,2
- в диапазоне с разностью верхнего и нижнего	.0.5
пределов измерений > 300 °C	$\pm 0,5$
- абсолютной при измерении разности температур (Δt)	
парных измерительных каналов для входных сигналов от	
термопреобразователей сопротивления в диапазоне от 0	+F0 02 + 0 001 A41
до 150 °С, °С	$\pm [0.03 + 0.001 \cdot \Delta t]$
Дополнительная абсолютная погрешность, вызванная	Не превышает 0,5 от основной
изменением температуры окружающей среды	абсолютной погрешности на
	каждые 10 °C
Продоль и понужесомой природочной погранически	±0,1 или ±0,2
Пределы допускаемой приведенной погрешности	±0,1 или ±0,2 (нормирующее значение: 16 мА)
выходных каналов (4 - 20) мА, %	
Пределы допускаемой относительной погрешности при	± 0.01
измерении времени, %	

Пределы допускаемой основной погрешности при использовании приборов в составе измерительных комплексов представлены в таблице 3.

Таблица 3

Измерительный комплекс	Измеряемая величина	Диапазон измерений	Пределы допускаемой основной погрешности
Счетчик жидкости	Масса жидкости, т	от 0 до 10 ⁶	±0,2 % (относительная)
	Температура, °С	от -70 до +200	$\pm 0,1$ (абсолютная)
Теплосчетчик	Масса теплоносителя, т	от 0 до 10^6	±0,2 % (относительная)
	Количество тепловой энергии, ГДж (Гкал)	от 0 до 10 ⁶	$\pm (0.4+3/\Delta t)\%$ (относительная)
	Температура, °С	от 0 до 180	±0,1 (абсолютная)
	Разность температур, °С	от 3 до 150	±(0,03 + 0,001·∆t) (абсолютная)

Измерительный комплекс	Измеряемая величина	Диапазон измерений	Пределы допускаемой основной погрешности
Теплосчетчик для пара	Масса теплоносителя, т	от 0 до 10 ⁶	±0,25 % (относительная)
	Количество тепловой энергии, ГДж (Гкал)	от 0 до 10 ⁶	±0,4 % (относительная)
	Температура, °С	от 100 до 500	±0,5 (абсолютная)
	Давление, МПа	от 0 до 6	±0,1 % (приведенная*)
Комплекс учета газа	Объем в стандартных условиях, м ³	от 0 до 10 ⁶	±0,35 % (относительная)
	Расход в стандартных условиях, м ³ /ч	от 0 до 10 ⁶	±0,35 % (относительная)
	Температура, °С	от -50 до +100	±0,1 (абсолютная)
	Давление, МПа	от 0 до 6	±0,1 % (приведенная*)
	Приведение расхода и объема к стандартным условиям	-	±0,05 % (относительная)

^{*} За нормирующее значение принимается значение диапазона измерений входного сигнала.

Технические характеристики приборов представлены в таблице 4.

Таблица 4

Наименование характеристики	Значение
Диапазон рабочих температур, °С	от 0 до 40
	или от -40 до +40 (по
	специальному заказу)
Питание приборов от сети переменного тока:	
- напряжением, В	от 187 до 242
- частотой, Гц	(50 ± 2)
Потребляемая мощность, B·A, не более:	
- без внешних нагрузок	8
- с внешней нагрузкой (первичные преобразователи)	14
Габаритные размеры приборов (Длина х ширина х высота),	
мм, не более	
- исполнение ИМ2300Н1	190 x 170 x 45
- исполнение ИМ2300ЩМ1	144 x 72 x 90
- исполнение ИM2300DIN	107 x 86 x 60
- исполнение ИМ2300ВМ (выносной измерительный модуль)	115 x 65 x 30
- исполнение ИМ2300ИРР	72 x 72 x 35
Масса, кг, не более	
- исполнение ИМ2300Н1	1,0
- исполнение ИМ2300ЩМ1	0,8
- исполнение ИM2300DIN	0,3
- исполнение ИМ2300ВМ (выносной измерительный модуль)	0,4
- исполнение ИМ2300ИРР	0,3
Средняя наработка на отказ, ч, не менее	40000
Срок службы изделия, лет, не менее	10
Маркировка взрывозащиты (для исполнения ИМ2300ЩМ1	
Ex-2F4I)	[Ex ib Gb] IIB X

Знак утверждения типа

наносится типографским способом в левом верхнем углу первого листа паспорта и в левой части лицевой панели прибора.

Комплектность средства измерений

приведена в таблице 5.

Таблица 5

Наименование	Обозначение	Количество, шт.			Примечание		
		H1	ЩМ1			ИРР	1
Прибор вторичный	ИМ2300	1	1	1	1	1	
теплоэнерго-							
контроллер ИМ2300							
Руководство по	ИМ23.00.001РЭ	1	1	1	1	1	
эксплуатации							
Паспорт	ИМ23.00.001ПС	1	1	1	1	1	
Кронштейн	23.00.050		1				
Кабель RS232	ИМ23.00.910		1				По заказу
Кабель RS232		1					По заказу
DB9-DB9							
Конвертор	ИМ23.16.51	1	1				По заказу
интерфейсов RS232-							
RS485							
Вилка MiniDIN-4M		1	1				
Клеммные колодки	MC420-350-4(2)	N	N	N	N	N	N - число
	MC100-762-2	1	1			1	заказанных входов
	MC1.5/2-ST			1	1		и выходов
Вилка DB-25F			1				
с кожухом							
Розетка DHS-15F			1				
с кожухом							
Программный	ImProgram	1	1	1	1	1	По заказу
комплекс							

Поверка

осуществляется по документу ИМ23.00.001РЭ «Прибор вторичный теплоэнергоконтроллер ИМ2300. Руководство по эксплуатации», раздел 3.4, утвержденному ФБУ «Пермский ЦСМ» 28.10.2016.

Основные средства поверки:

- рабочий эталон единицы электрического сопротивления в диапазоне (1 1000) Ом по Приказу Росстандарта от 15.02.2016 № 146 «Об утверждении Государственной поверочной схемы для средств измерений электрического сопротивления», (1 100) Ом, ПГ $\pm 0,01$ Ом; (100 1000) Ом, ПГ $\pm 0,0001$ \cdot R_{изм} Ом, регистрационный номер в Федеральном информационном фонде 58895-14;
- рабочий эталон единицы частоты в диапазоне (0,01 10000) Γ ц по Γ OCT 8.129-2013, (0,01 10000) Γ ц; $\Pi\Gamma$ ±0,01 %, регистрационный номер в Федеральном информационном фонде 58895-14;
- рабочий эталон единицы силы постоянного электрического тока в диапазоне (0 24) мА по ГОСТ 8.022-91, (0 24) мА; ПГ $\pm 0,002$ мА, регистрационный номер в Федеральном информационном фонде 58895-14;

- рабочий эталон единицы электрического сопротивления 3 разряда номинального значения 100 Ом по Приказу Росстандарта от 15.02.2016 № 146 «Об утверждении Государственной поверочной схемы для средств измерений электрического сопротивления», R = 100 Ом, $\Pi\Gamma \pm 0.01$ %, регистрационный номер в Федеральном информационном фонде 8238-81;
- вольтметр универсальный B7-46 (регистрационный номер в Федеральном информационном фонде 11204-88), U = 0.2 B; 2 B; 20 B, $\Pi\Gamma \pm 0.02$ %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус прибора в соответствии с рисунком 2.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к приборам вторичным теплоэнергоконтроллерам ИМ2300

ГОСТ 8.586.(1-5)-2005 ГСИ. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств.

ГОСТ 30319.(1-3)-2015 Газ природный. Методы расчета физических свойств.

ГОСТ Р 8.740-2011 ГСИ. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

МИ 2412-97 ГСИ. Водяные системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя.

МИ 2451-98 ГСИ. Паровые системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя.

ГСССД МР 113-03 Определение плотности, фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости влажного нефтяного газа в диапазоне температур 263...500 К при давлении до 15 МПа.

Технические условия ИМ23.00.00.001ТУ Прибор вторичный теплоэнергоконтроллер ИМ2300.

Изготовитель

Общество с ограниченной ответственностью «Научно-производственное предприятие «Интромаг» (ООО «НПП «Интромаг»)

ИНН 5903020720

Адрес: 614990, г. Пермь, ул. Данщина, 19 Телефон (342) 237-17-80, факс (342) 237-17-49

E -mail: vzel@mpm.ru

Заявитель

Федеральное государственное унитарное предприятие «Особое конструкторское бюро «Маяк» (ФГУП «ОКБ «Маяк»)

ИНН 5903004527

Адрес: 614990, г. Пермь, ул. Данщина, 19 Телефон (342) 237-17-75, факс (342) 237-17-49

E -mail: info@okbmayak.perm.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Пермском крае» (ФБУ «Пермский ЦСМ»)

Адрес: 614068, г. Пермь, ул. Борчанинова, д. 85 Телефон (342) 236-31-00, факс (843) 236-23-46

Web-сайт: http://www.permcsm.ru

E-mail: pcsm@permcsm.ru

Аттестат аккредитации ФБУ «Пермский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа RA.RU.311973 от 13.12.2016 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2017 г.